Tracking Metrics
Track Production Metrics¶
Description
-
Tracking Production Metrics enables users to plot trends in metrics related to model performance. These metrics can be model-specific metrics (ROC-AUC, accuracy, etc.) or business metrics.
-
Metrics tracked & scheduled as Monitors through Orbit's built-in scheduler show up as a plot titled with the metric name and the data series labeled as the monitor name.
foundations.track_production_metrics(metric_name, metric_value_dictionary)
-
metric_name (str): A name associated with the metric.
-
metric_value_dictionary (dict): A key-value pair of {str:int|float} where the key is the inference date formatted as
"%Y-%m-%d %H:%M:%S"
and the value is the evaluated metric value
Returns
- None
Example:
import foundations from datetime import datetime metric_name = 'my_metric' inference_date = str(datetime.strftime(datetime.now(), "%Y-%m-%d %H:%M:%S")) calculated_metric_value = 0.7 #sample value metric_values_dictionary = {inference_date: calculated_metric_value} foundations.track_production_metrics(metric_name, metric_values_dictionary)